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About me

Graduate in Statistics.
Specialised in Artificial Intelligence, with a
master’s degree.
2 years of experience working as a data
scientist, focusing on the development of AI
models, as well as data analysis.
Currently, researcher at the USE in the
REXASI-PRO European Project and doing a
PhD in mathematics, which is focused on the
intersection between TDA and AI.
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REXASI-PRO

Wheelchair Drone Orchestrator
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REXASI-PRO

Our aim is to use TDA for analyse the discrete model of the fleet behavior,
contributing to safety navigation.
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Outline

Topogical Data Analysis and Barycentric Coordinates
Neural Networks
Barycentric Neural Network
Continuous Piecewise Linear Function Representation using BNN
Continuous Function Approximation using BNN
Conclusion
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TDA
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What is Topology? 

Topology1, is a branch of Mathematics, which explores the properties of space that
remain unchanged under continuous transformations, like stretching or vending,
without tearing.

Understanding Shape and Space
Problem-Solving Across Disciplines
Broader Perspective

1Herbert Edelsbrunner and John L Harer. Computational topology: an introduction. American Mathematical
Society, 2022.
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What about algebraic topology? 

Algebraic Topology2, is a branch of Topology, which use algebraic tools for study and
classify topological spaces.

2Allen Hatcher. Algebraic topology. Cambridge University Press, 2005.
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Algebraic Topology Key concepts

Simplicial Complexes: Discrete structures used to represent topological spaces for
algebraic analysis.

Homology: A tool to study the number and types of “holes” in a space.
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Simplicial Complexes

A simplex is a general geometric object that have dimension:
0-simplex: a point (called a vertex)
1-simplex: a line segment (called an edge)
2-simplex: a triangle (filled)
3-simplex: a tetrahedron
...
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Simplicial Complexes

A simplicial complex is obtained by a nested family of simplices

(a) Simplicial complex example (b) This is not a simplicial complex!
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Homology

What does Homology (and Betti numbers) measure?

Homology describes features of a topological space, quantifying how many
structures exist on it. → Betti numbers

β0: number of connected components
β1: number of cycles
β2: number of voids
βK: number of k-dimensional holes
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Homology

A filtration for t = 0,1,2,3,4,5,6,7 (from left to right)

t = 0 → β0 = 5, β1 = 0, β2 = 0
t = 2 → β0 = 1, β1 = 1, β2 = 0
t = 5 → β0 = 1, β1 = 2, β2 = 1

Víctor Toscano Durán Barycentric Coordinates in NN-Based Function Approximation JTDA 2025 14 / 40



Introduction TDA NNs Barycentric Neural Network CPLF representation Continuous Function Approximation Conclusion

Homology

A filtration for t = 0,1,2,3,4,5,6,7 (from left to right)

t = 0 → β0 = 5, β1 = 0, β2 = 0

t = 2 → β0 = 1, β1 = 1, β2 = 0
t = 5 → β0 = 1, β1 = 2, β2 = 1

Víctor Toscano Durán Barycentric Coordinates in NN-Based Function Approximation JTDA 2025 14 / 40



Introduction TDA NNs Barycentric Neural Network CPLF representation Continuous Function Approximation Conclusion

Homology

A filtration for t = 0,1,2,3,4,5,6,7 (from left to right)

t = 0 → β0 = 5, β1 = 0, β2 = 0
t = 2 → β0 = 1, β1 = 1, β2 = 0

t = 5 → β0 = 1, β1 = 2, β2 = 1

Víctor Toscano Durán Barycentric Coordinates in NN-Based Function Approximation JTDA 2025 14 / 40



Introduction TDA NNs Barycentric Neural Network CPLF representation Continuous Function Approximation Conclusion

Homology

A filtration for t = 0,1,2,3,4,5,6,7 (from left to right)

t = 0 → β0 = 5, β1 = 0, β2 = 0
t = 2 → β0 = 1, β1 = 1, β2 = 0
t = 5 → β0 = 1, β1 = 2, β2 = 1

Víctor Toscano Durán Barycentric Coordinates in NN-Based Function Approximation JTDA 2025 14 / 40



Introduction TDA NNs Barycentric Neural Network CPLF representation Continuous Function Approximation Conclusion

What is TDA? 

Topological Data Analysis3 (TDA) consists in applying techniques from algebraic
topology to the analysis of data, studying how the shape of the data is modified
along the filtration.

The data we use often has a complex topological structure, which can very useful
to know and use in tasks such as data analysis and AI modelling.

Typical TDA Pipeline

3Elizabeth Munch. “A User’s Guide to Topological Data Analysis”. In: Journal of Learning Analytics 4.2 (2017).
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Persistent Homology

Persistent homology is the mathematical framework which encode the evolution
of the topology of a collection of simplicial complex (filtration from a topological
space).

Persistence diagram is the tool used for visualize persistent homology, i.e, the
persistence of topological features.
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Persistent entropy
Persistence entropy4 is a measure of the complexity of a topological space based on its
persistence barcode5, measuring how different bars are in length.

H = −
∑
i∈I

pi ln pi

Maximum persistence entropy corresponds to the situation in which all the intervals
in the barcode are of equal length, → H = ln(n), being n the number of topological
features (bars).

4Matteo Rucco et al. “A new topological entropy-based approach for measuring similarities among piecewise
linear functions”. In: Signal Processing 134 (2017).

5Robert Ghrist. “Barcodes: the persistent topology of data”. In: Bulletin of the American Mathematical
Society 45.1 (2008).
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Barycentric Coordinates

Barycentric coordinates describe the location of a point within a simplex formed
by vertices as a system of weights.

This representation is crucial for topology because it allows continuous
interpolation across simplices in a simplicial complex.

For a point p in a 1D segment [x1, x2], the barycentric coordinate t is defined as:

t =
p − x1
x2 − x1

where t represents the proportion of x between x1 and x2.

x1 = 0 x2 = 10p = 4
t = 0 t = 1t = 0.4
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NNs
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Artificial Intelligence
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Neural Networks

Neural Networks6 are computational deep learning models inspired by the human
brain’s architecture, consisting in layers of interconnected nodes (neurons), each
performing a mathematical transformation that maps inputs to outputs.

Key components:
Layers: Input, Hidden
and Output
Neurons
Activation Functions

Types:
MLP
CNNs
RNNs
· · ·

a1

a2

an

α1

α2

αn

x1

y1

y2

yn

z1

b1

b2

bn

β

6Yann LeCun, G Hinton, and Y Bengio. “Deep learning”. In: Nature 521 (2015).
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How they work?

Training: Neural networks learn from large amounts of data. During training,
they are fed with examples and adjust their internal weights to make more
accurate predictions.

Feedback: Through the backpropagation process, the network adjusts its internal
parameters to minimize the error between its prediction and the correct answer.
Optimization: An optimization algorithm like gradient descent adjusts the
weights to minimize the error in predictions.
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Barycentric Neural Network
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Barycentric Neural Network

This neural network used barycentric coordinates for create the neural network,
including his structure, weights and biases.

Using t, according to barycentric coordinates, we can perform linear interpolation to
estimate a function value f(x) at any x between two points, (x1, y1) and (x2, y2).

f(x) = mx + n = step(t) · ReLU(1 − t) · y1 + step(1 − t) · ReLU(t) · y2 = BNN(x)

where step(t) activates the contribution of y1 and y2, and ReLU adjusts their weights
based on t.

step(x) =
{

1 si x ≥ 0
0 si x < 0

and ReLU(x) = max(0, x)
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Barycentric Neural Network
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Barycentric Neural Network

Barycentric coordinates simplify the neural network construction



Training
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CPLF representation
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CPLF

A Continuous Piecewise Linear Function (CPLF) is a mathematical function defined by
different linear expressions over different intervals of its domain, with the characteristic
that it is continuous across its entire domain (no jumps or discontinuities).

CPLF(x) =

x + 2 if x < 0,

−x + 2 if x ∈ [0, 2),
x − 2 if x ≥ 2.
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Remark 1

Remark
Let f(x) be a continuous function linearly interpolated between points x1 and x2, with
values y1 = f(x1) and y2 = f(x2). The proposed methodology, based on barycentric
coordinates and a structure similar to a neural network, ensures the representation of
f(x) as a continuous linear function.

f(x) = BNN(t)
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Extension to multiple points

This formulation can be extended to multiple points. Given a sequence of points
{(xi, yi)}, the interpolation can represent a continuous piecewise linear function (CPLF).
The function f(x) is represented as:

CPLF(x) = BNN(t)
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Remark 2

Remark
Let CPLF be a continuous function defined on R → R, which can be divided into a
finite number of intervals, each being linear. There exists a Barycentric Neural
Network (BNN), such that for all x ∈ R → R

CPLF(x) = BNN(t)
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Examples

(a) CPLF(x) =

{
x + 1 if x ∈ [1, 3)
x − 2 if x ∈ [3, 5) (b) CPLF(x) =

{
x + 2 if x ∈ [−10, 3)
−x − 2 if x ∈ [0, 2)
x − 2 if x ∈ [2, 10)

Víctor Toscano Durán Barycentric Coordinates in NN-Based Function Approximation JTDA 2025 32 / 40



Introduction TDA NNs Barycentric Neural Network CPLF representation Continuous Function Approximation Conclusion

Continuous Function Approximation
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Continuous Function

Function f(x), not neccesary to be linear, but continuous, as sin(x).
Divide it into m segments, obtaining a CPLF.
Thanks to the BNN, we can represent the CPLF, serving as approximation of any
continuous function.
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Persistent entropy for optimal approximation

We use persistent entropy to find the smallest number of segments required to divide
the function to satisfy a desired approximation precision ϵ.

Given a continuous function f : R → R, and a barycentric neural network BNN that
approximates f(x) by a CPLF with m equidistant segments, we want to find the minimum
number of segments mmin such that:

|H(f(x)) − H(̂f(x, m))| < ϵ.

f̂(x, m) correspond to the BNN that represent the CPLF obtained dividing f(x) in m
equidistant segments.
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Persistent entropy for optimal approximation

1 Start with an initial number of segments m0.
2 Evaluate the error |H(f(x)) − H(̂f(x, m0))|.
3 Increase m until the error |H(f(x)) − H(̂f(x, m))|) falls below the desired threshold

ϵ.

f(x) = sin(x) approximation using the BNN given a desired level of precision(ϵ = 0.001).
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Persistent entropy as similarity metric

Barycentric Neural Network similarity according to persistent entropy approximating sin(x) dividing it into different
number of segments.
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Conclusion
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Conclusion

The use of geometrical-topological concepts provides a novel perspective for many
machine-learning applications!

Effective neural network based on barycentric coordinates for represent
CPLFs and approximate continuous functions without training.
Persistent entropy as a tool for optimal function approximation and similarity
measure.

Future work: Extend this approach to higher-dimensional function
approximations, and explore its application in real-world scenarios.
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Thanks for your time! ⌣

If you have any question, please shoot!
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