Barycentric Coordinates in Neural Network-Based Function Approximation

Víctor Toscano Durán

vtoscano@us.es

Joint work with Rocío González Díaz and Miguel A. Gutiérrez Naranjo

Applied Mathematics I Department, University of Sevilla Seville, Spain

Jornadas de Topología de Datos, Logroño, January 2025

0000			

Introduction

Introduction 00000			

About me

- Graduate in Statistics.
- Specialised in Artificial Intelligence, with a master's degree.
- 2 years of experience working as a data scientist, focusing on the development of AI models, as well as data analysis.
- Currently, researcher at the USE in the REXASI-PRO European Project and doing a PhD in mathematics, which is focused on the intersection between TDA and AI.

Introductio			

REXASI-PRO

Wheelchair

Drone

Orchestrator

Introduction			

REXASI-PRO

Our aim is to use TDA for analyse the discrete model of the fleet behavior, contributing to safety navigation.

Introduction			

Outline

- Topogical Data Analysis and Barycentric Coordinates
- Neural Networks
- Barycentric Neural Network
- Continuous Piecewise Linear Function Representation using BNN
- Continuous Function Approximation using BNN
- Conclusion

00000 0000000000 0000 0000 0000 00000 00000 00000 0000		TDA •000000000000000000000000000000000000					
---	--	--	--	--	--	--	--

TDA

What is Topology? 💬

Topology¹, is a branch of Mathematics, which explores the properties of space that remain unchanged under continuous transformations, like stretching or vending, without tearing.

¹Herbert Edelsbrunner and John L Harer. Computational topology: an introduction. American Mathematical Society, 2022.

What is Topology? 💬

Topology¹, is a branch of Mathematics, which explores the properties of space that remain unchanged under continuous transformations, like stretching or vending, without tearing.

- Understanding Shape and Space
- Problem-Solving Across Disciplines
- Broader Perspective

¹Herbert Edelsbrunner and John L Harer. Computational topology: an introduction. American Mathematical Society, 2022.

What is Topology? 💬

Topology¹, is a branch of Mathematics, which explores the properties of space that remain unchanged under continuous transformations, like stretching or vending, without tearing.

- Understanding Shape and Space
- Problem-Solving Across Disciplines
- Broader Perspective

¹Herbert Edelsbrunner and John L Harer. Computational topology: an introduction. American Mathematical Society, 2022.

What about algebraic topology? 💬

Algebraic Topology², is a branch of Topology, which use algebraic tools for study and classify topological spaces.

²Allen Hatcher. Algebraic topology. Cambridge University Press, 2005.

What about algebraic topology? 💬

Algebraic Topology², is a branch of Topology, which use algebraic tools for study and classify topological spaces.

²Allen Hatcher. Algebraic topology. Cambridge University Press, 2005.

	TDA 00000000000000000				
Algebra	aic Topology	′ Key	concepts		

 Simplicial Complexes: Discrete structures used to represent topological spaces for algebraic analysis.

• Homology: A tool to study the number and types of "holes" in a space.

	TDA 000000000000			
Simplic	ial Complex	es		

A simplex is a general geometric object that have dimension:

- 0-simplex: a point (called a vertex)
- 1-simplex: a line segment (called an edge)
- 2-simplex: a triangle (filled)
- 3-simplex: a tetrahedron

0-simplex 1-simplex 2-simplex 3-simplex

....

	TDA 0000000000000			
Simplic	cial Complex	es		

A simplicial complex is obtained by a nested family of simplices

	TDA 000000000000000			
Homolo	ogy			

What does Homology (and Betti numbers) measure?

	TDA 000000000000000			
Homol	ogy			

- What does Homology (and Betti numbers) measure?
- \blacksquare Homology describes features of a topological space, quantifying how many structures exist on it. \to Betti numbers

TDA 0000000000000			

- What does Homology (and Betti numbers) measure?
- \blacksquare Homology describes features of a topological space, quantifying how many structures exist on it. \to Betti numbers
 - β_0 : number of connected components

TDA 0000000000000000			

- What does Homology (and Betti numbers) measure?
- \blacksquare Homology describes features of a topological space, quantifying how many structures exist on it. \to Betti numbers
 - β_0 : number of connected components
 - β_1 : number of cycles

TDA 000000000000000			

- What does Homology (and Betti numbers) measure?
- \blacksquare Homology describes features of a topological space, quantifying how many structures exist on it. \to Betti numbers
 - β_0 : number of connected components
 - β_1 : number of cycles
 - β_2 : number of voids

TDA 00000000000000			

- What does Homology (and Betti numbers) measure?
- \blacksquare Homology describes features of a topological space, quantifying how many structures exist on it. \to Betti numbers
 - β_0 : number of connected components
 - β_1 : number of cycles
 - β_2 : number of voids
 - β_K : number of k-dimensional holes

TDA 000000000000000000000000000000000000			

A filtration for t = 0, 1, 2, 3, 4, 5, 6, 7 (from left to right)

TDA 000000000000000000000000000000000000			

A filtration for t = 0, 1, 2, 3, 4, 5, 6, 7 (from left to right)

• $t = 0 \rightarrow \beta_0 = 5, \beta_1 = 0, \beta_2 = 0$

TDA 000000000000000000000000000000000000			

A filtration for t = 0, 1, 2, 3, 4, 5, 6, 7 (from left to right)

•
$$t = 0 \rightarrow \beta_0 = 5, \beta_1 = 0, \beta_2 = 0$$

• $t = 2 \rightarrow \beta_0 = 1, \beta_1 = 1, \beta_2 = 0$

TDA 000000000000000			

A filtration for t = 0, 1, 2, 3, 4, 5, 6, 7 (from left to right)

• $t = 0 \rightarrow \beta_0 = 5, \beta_1 = 0, \beta_2 = 0$ • $t = 2 \rightarrow \beta_0 = 1, \beta_1 = 1, \beta_2 = 0$ • $t = 5 \rightarrow \beta_0 = 1, \beta_1 = 2, \beta_2 = 1$

 Topological Data Analysis³ (TDA) consists in applying techniques from algebraic topology to the analysis of data, studying how the shape of the data is modified along the filtration.

³Elizabeth Munch. "A User's Guide to Topological Data Analysis". In: Journal of Learning Analytics 4.2 (2017).

	TDA 000000000000000000000000000000000000			
What i	s TDA? 💬			

- **Topological Data Analysis**³ (**TDA**) consists in applying techniques from algebraic topology to the analysis of data, studying how the shape of the data is modified along the filtration.
- The data we use often has a complex topological structure, which can very useful to know and use in tasks such as data analysis and AI modelling.

³Elizabeth Munch. "A User's Guide to Topological Data Analysis". In: Journal of Learning Analytics 4.2 (2017).

	TDA 000000000000000			
What is	s TDA? 💬			

- Topological Data Analysis³ (TDA) consists in applying techniques from algebraic topology to the analysis of data, studying how the shape of the data is modified along the filtration.
- The data we use often has a complex topological structure, which can very useful to know and use in tasks such as data analysis and AI modelling.

Typical TDA Pipeline

³Elizabeth Munch. "A User's Guide to Topological Data Analysis". In: Journal of Learning Analytics 4.2 (2017).

	TDA 0000000000000000			
Persist	ent Homolog	gy		

 Persistent homology is the mathematical framework which encode the evolution of the topology of a collection of simplicial complex (filtration from a topological space).

	TDA 000000000000000			
Persiste	ent Homolog	gy		

- Persistent homology is the mathematical framework which encode the evolution of the topology of a collection of simplicial complex (filtration from a topological space).
- Persistence diagram is the tool used for visualize persistent homology, i.e, the persistence of topological features.

	TDA 0000000000000000						
Persistent Homology							

- Persistent homology is the mathematical framework which encode the evolution of the topology of a collection of simplicial complex (filtration from a topological space).
- Persistence diagram is the tool used for visualize persistent homology, i.e, the persistence of topological features.

	TDA 00000000000000					
Persistent entropy						

Persistence entropy⁴ is a measure of the complexity of a topological space based on its **persistence barcode**⁵, measuring how different bars are in length.

⁴Matteo Rucco et al. "A new topological entropy-based approach for measuring similarities among piecewise linear functions". In: Signal Processing 134 (2017).

⁵Robert Ghrist. "Barcodes: the persistent topology of data". In: Bulletin of the American Mathematical Society 45.1 (2008).

Persistent entropy

Persistence entropy⁴ is a measure of the complexity of a topological space based on its **persistence barcode**⁵, measuring how different bars are in length.

$$H = -\sum_{i \in I} p_i \ln p_i$$

⁴Matteo Rucco et al. "A new topological entropy-based approach for measuring similarities among piecewise linear functions". In: Signal Processing 134 (2017).

⁵Robert Ghrist. "Barcodes: the persistent topology of data". In: Bulletin of the American Mathematical Society 45.1 (2008).

Persistent entropy

Persistence entropy⁴ is a measure of the complexity of a topological space based on its **persistence barcode**⁵, measuring how different bars are in length.

$$H = -\sum_{i \in I} p_i \ln p_i$$

Maximum persistence entropy corresponds to the situation in which all the intervals in the barcode are of equal length, $\rightarrow H = \ln(n)$, being n the number of topological features (bars).

⁴Matteo Rucco et al. "A new topological entropy-based approach for measuring similarities among piecewise linear functions". In: Signal Processing 134 (2017).

⁵Robert Ghrist. "Barcodes: the persistent topology of data". In: Bulletin of the American Mathematical Society 45.1 (2008).

Persistent entropy

Persistence entropy⁴ is a measure of the complexity of a topological space based on its **persistence barcode**⁵, measuring how different bars are in length.

Maximum persistence entropy corresponds to the situation in which all the intervals in the barcode are of equal length, $\rightarrow H = \ln(n)$, being n the number of topological features (bars).

⁴Matteo Rucco et al. "A new topological entropy-based approach for measuring similarities among piecewise linear functions". In: Signal Processing 134 (2017).

⁵Robert Ghrist. "Barcodes: the persistent topology of data". In: Bulletin of the American Mathematical Society 45.1 (2008).

	TDA 000000000000							
Barycentric Coordinates								

 Barycentric coordinates describe the location of a point within a simplex formed by vertices as a system of weights.
	TDA 000000000000				
Baryce	ntric Coordi	nates	5		

- **Barycentric coordinates** describe the location of a point within a simplex formed by vertices as a system of weights.
- This representation is crucial for topology because it allows continuous interpolation across simplices in a simplicial complex.

	TDA 000000000000				
Baryce	ntric Coordi	nates	5		

- **Barycentric coordinates** describe the location of a point within a simplex formed by vertices as a system of weights.
- This representation is crucial for topology because it allows continuous interpolation across simplices in a simplicial complex.

For a point p in a 1D segment $[x_1, x_2]$, the barycentric coordinate t is defined as:

$$t = \frac{p - x_1}{x_2 - x_1}$$

where *t* represents the proportion of x between x_1 and x_2 .

	TDA 000000000000				
Baryce	ntric Coordi	nates	5		

- Barycentric coordinates describe the location of a point within a simplex formed by vertices as a system of weights.
- This representation is crucial for topology because it allows continuous interpolation across simplices in a simplicial complex.

For a point p in a 1D segment $[x_1, x_2]$, the barycentric coordinate t is defined as:

$$t=\frac{p-x_1}{x_2-x_1}$$

where *t* represents the proportion of x between x_1 and x_2 .

$$x_1 = 0$$
 $p = 4$ $x_2 = 10$
 $t = 0$ $t = 0.4$ $t = 1$

	0000		

 NNs

	NNs O●OO		

Artificial Intelligence

Artificial Intelligence (AI)

Computational programs perform intelligent tasks

Machine Learning (ML)

Automatically learns and improves from experience

Deep Learning (DL)

Multilayered artificial neural networks

		NNs 00●0		
Neura	al Networks			

Neural Networks⁶ are computational deep learning models inspired by the human brain's architecture, consisting in layers of interconnected nodes (neurons), each <u>performing a mathe</u>matical transformation that maps inputs to outputs.

	NNs 00●0		

Neural Networks

Neural Networks⁶ are computational deep learning models inspired by the human brain's architecture, consisting in layers of interconnected nodes (neurons), each performing a mathematical transformation that maps inputs to outputs.

- Key components:
 - Layers: Input, Hidden and Output
 - Neurons
 - Activation Functions

	NNs 00●0		

Neural Networks

Neural Networks⁶ are computational deep learning models inspired by the human brain's architecture, consisting in layers of interconnected nodes (neurons), each performing a mathematical transformation that maps inputs to outputs.

- Key components:
 - Layers: Input, Hidden and Output
 - Neurons
 - Activation Functions

	NNs 00●0		

Neural Networks

Neural Networks⁶ are computational deep learning models inspired by the human brain's architecture, consisting in layers of interconnected nodes (neurons), each performing a mathematical transformation that maps inputs to outputs.

- Key components:
 - Layers: Input, Hidden and Output
 - Neurons
 - Activation Functions
- Types:
 - MLP
 - CNNs
 - RNNs
 - • •

	NNs		
How they v	vork?		

 Training: Neural networks learn from large amounts of data. During training, they are fed with examples and adjust their internal weights to make more accurate predictions.

		NNs 000●		
How t	hey work?			

- Training: Neural networks learn from large amounts of data. During training, they are fed with examples and adjust their internal weights to make more accurate predictions.
- Feedback: Through the backpropagation process, the network adjusts its internal parameters to minimize the error between its prediction and the correct answer.

	NNs 000●		
How they work?			

- Training: Neural networks learn from large amounts of data. During training, they are fed with examples and adjust their internal weights to make more accurate predictions.
- Feedback: Through the backpropagation process, the network adjusts its internal parameters to minimize the error between its prediction and the correct answer.
- **Optimization**: An optimization algorithm like gradient descent adjusts the weights to minimize the error in predictions.

		NNs 000●		
How th	iey work?			

- Training: Neural networks learn from large amounts of data. During training, they are fed with examples and adjust their internal weights to make more accurate predictions.
- Feedback: Through the backpropagation process, the network adjusts its internal parameters to minimize the error between its prediction and the correct answer.
- **Optimization**: An optimization algorithm like gradient descent adjusts the weights to minimize the error in predictions.

	0000		

Barycentric Neural Network

			Barycentric Neural Network		
Barycer	ntric Neural	Net	work		

This neural network used barycentric coordinates for create the neural network, including his structure, weights and biases.

This neural network used barycentric coordinates for create the neural network, including his structure, weights and biases.

Using *t*, according to barycentric coordinates, we can perform linear interpolation to estimate a function value f(x) at any x between two points, (x_1, y_1) and (x_2, y_2) .

$$f(x) = mx + n = step(t) \cdot ReLU(1-t) \cdot y_1 + step(1-t) \cdot ReLU(t) \cdot y_2 = BNN(x)$$

where step(t) activates the contribution of y_1 and y_2 , and ReLU adjusts their weights based on t.

Barycentric Neural Network

This neural network used barycentric coordinates for create the neural network, including his structure, weights and biases.

Using *t*, according to barycentric coordinates, we can perform linear interpolation to estimate a function value f(x) at any x between two points, (x_1, y_1) and (x_2, y_2) .

$$f(x) = mx + n = step(t) \cdot ReLU(1-t) \cdot y_1 + step(1-t) \cdot ReLU(t) \cdot y_2 = BNN(x)$$

where step(t) activates the contribution of y_1 and y_2 , and ReLU adjusts their weights based on t.

$$step(x) = \begin{cases} 1 & \text{si } x \ge 0 \\ 0 & \text{si } x < 0 \end{cases} \text{ and } ReLU(x) = max(0, x)$$

Introduction TDA NNs Barycentric Neural Network CPLF representation Continuous Function Approximation Conclusion

Barycentric Neural Network

Barycentric Neural Network Representation

			Barycentric Neural Network		
Baryce	ntric Neural	Net	work		

Barycentric coordinates simplify the neural network construction

↓

XTraining

		00000	

CPLF representation

		CPLF representation 0●0000	
CPLF			

A **Continuous Piecewise Linear Function** (CPLF) is a mathematical function defined by different linear expressions over different intervals of its domain, with the characteristic that it is continuous across its entire domain (no jumps or discontinuities).

$$CPLF(x) = \begin{cases} x+2 & \text{if } x < 0, \\ -x+2 & \text{if } x \in [0,2), \\ x-2 & \text{if } x \ge 2. \end{cases}$$

		CPLF representation	

Remark 1

Remark

Let f(x) be a continuous function linearly interpolated between points x_1 and x_2 , with values $y_1 = f(x_1)$ and $y_2 = f(x_2)$. The proposed methodology, based on barycentric coordinates and a structure similar to a neural network, ensures the representation of f(x) as a continuous linear function.

f(x) = BNN(t)

				CPLF representation	
Evtenci	on to multir	nle n	ointe		

This formulation can be extended to multiple points. Given a sequence of points $\{(x_i, y_i)\}$, the interpolation can represent a continuous piecewise linear function (CPLF). The function f(x) is represented as:

CPLF(x) = BNN(t)

		CPLF representation	

Remark 2

Remark

Let *CPLF* be a continuous function defined on $\mathbb{R} \to \mathbb{R}$, which can be divided into a finite number of intervals, each being linear. There exists a Barycentric Neural Network (BNN), such that for all $x \in \mathbb{R} \to \mathbb{R}$

CPLF(x) = BNN(t)

		CPLF representation	

Examples

		Continuous Function Approximation	
		00000	

Continuous Function Approximation

				Continuous Function Approximation	
Contin	uous Functio	on			

- Function f(x), not neccesary to be linear, but continuous, as sin(x).
- Divide it into *m* segments, obtaining a CPLF.
- Thanks to the *BNN*, we can represent the CPLF, serving as approximation of any continuous function.

Persistent entropy for optimal approximation

We use persistent entropy to find the smallest number of segments required to divide the function to satisfy a desired approximation precision ϵ .

Given a continuous function $f : \mathbb{R} \to \mathbb{R}$, and a barycentric neural network *BNN* that approximates f(x) by a CPLF with *m* equidistant segments, we want to find the minimum number of segments m_{\min} such that:

 $|H(f(x)) - H(\hat{f}(x,m))| < \epsilon.$

 $\hat{f}(x,m)$ correspond to the *BNN* that represent the CPLF obtained dividing f(x) in m equidistant segments.

Persistent entropy for optimal approximation

- **I** Start with an initial number of segments m_0 .
- **2** Evaluate the error $|H(f(x)) H(\hat{f}(x, m_0))|$.
- Increase *m* until the error $|H(f(x)) H(\hat{f}(x,m))|$ falls below the desired threshold ϵ .

f(x) = sin(x) approximation using the BNN given a desired level of precision($\epsilon = 0.001$).

Persistent entropy as similarity metric

Barycentric Neural Network similarity according to persistent entropy approximating sin(x) dividing it into different number of segments.

			000

Conclusion

		0000	0000	000000	00000	000	
Conclusion							

The use of geometrical-topological concepts provides a novel perspective for many machine-learning applications!

				Conclusion
Conclu	sion			

- The use of geometrical-topological concepts provides a novel perspective for many machine-learning applications!
 - Effective neural network based on barycentric coordinates for represent CPLFs and approximate continuous functions without training.

			Conclusion

Conclusion

- The use of geometrical-topological concepts provides a novel perspective for many machine-learning applications!
 - Effective neural network based on barycentric coordinates for represent CPLFs and approximate continuous functions without training.
 - Persistent entropy as a tool for optimal function approximation and similarity measure.

			Conclusion ○●○

Conclusion

- The use of geometrical-topological concepts provides a novel perspective for many machine-learning applications!
 - Effective neural network based on barycentric coordinates for represent CPLFs and approximate continuous functions without training.
 - Persistent entropy as a tool for optimal function approximation and similarity measure.
- Future work: Extend this approach to higher-dimensional function approximations, and explore its application in real-world scenarios.

				Conclusion 00●
Acknov	vledgement			

- Rocío González Díaz and Miguel A. Gutierrez-Naranjo for the insightful discussions and ideas, as well as for their collaboration.
- European Union HORIZON-CL4-2021-HUMAN-01-01 under grant agreement 101070028 (REXASI-PRO).

Thanks for your time! 🙂

If you have any question, please shoot!